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Enhancement of heat transport across a fluid layer is of fundamental interest as well
as great technological importance. For decades, Rayleigh–Bénard convection has been
a paradigm for the study of convective heat transport, and how to improve its overall
heat-transfer efficiency is still an open question. Here, we report an experimental
and numerical study that reveals a novel mechanism that leads to much enhanced
heat transport. When vertical partitions are inserted into a convection cell with thin
gaps left open between the partition walls and the cooling/heating plates, it is found
that the convective flow becomes self-organized and more coherent, leading to an
unprecedented heat-transport enhancement. In particular, our experiments show that
with six partition walls inserted, the heat flux can be increased by approximately
30 %. Numerical simulations show a remarkable heat-flux enhancement of up to 2.3
times (with 28 partition walls) that without any partitions.

Key words: Bénard convection, turbulent convection, turbulent flows

1. Introduction

Thermal convection is an efficient means to carry heat flux across space by a
moving fluid, and it is ubiquitous in nature. A classical model system to study this
phenomenon is Rayleigh–Bénard convection (RBC) (Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010), i.e. a thermally driven fluid layer lies above a horizontal
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heating plate and below a cooling plate. Due to the buoyancy instability, the fluid
moves and carries a heat flux upwards, which is typically many times that by thermal
diffusion. An important question to ask is how much heat flux moves through the
RBC cell given an enclosed fluid and an imposed temperature difference across
the cell (Ahlers et al. 2009; Chillà & Schumacher 2012). This heat flux can be
characterized by a non-dimensional parameter, defined as the Nusselt number

Nu=QH/χ1T, (1.1)

which depends largely on the control parameters of the system, called the Rayleigh
number and the Prandtl number, i.e.

Ra= αgH31T/νκ and Pr= ν/κ. (1.2a,b)

Here, Q is the resulting heat flux across the fluid layer of thickness H for an applied
temperature difference 1T , g is the acceleration due to gravitation, and α, ν, κ and
χ are respectively the thermal expansion coefficient, kinematic viscosity, thermal
diffusivity and thermal conductivity of the enclosed fluid. The dependence of Nu
on Ra and Pr has been extensively studied, both experimentally and numerically,
in great detail for many years (Chavanne et al. 1997; Ashkenazi & Steinberg 1999;
Grossmann & Lohse 2000; Kerr & Herring 2000; Niemela et al. 2000; Ahlers &
Xu 2001; Xia, Lam & Zhou 2002; Verzicco & Camussi 2003; Roche et al. 2005;
Gibert et al. 2009; du Puits, Resagk & Thess 2010; Silano, Sreenivasan & Verzicco
2010; Stevens, Lohse & Verzicco 2011; He et al. 2012; Urban et al. 2012; Huang
& Zhou 2013; Wagner & Shishkina 2013). Scaling relationships were found from
these studies, suggesting that a heat flux is determined once the Rayleigh and Prandtl
numbers are known. For more detailed elucidation of the problem, we refer interested
readers to the recent review papers by Ahlers et al. (2009) and Chillà & Schumacher
(2012).

Another important problem that has been carefully investigated is to find out ways
to enhance heat transport through RBC, which is particularly useful in many industrial
processes and is of fundamental interest. Methods have been proposed to achieve high
heat flux in modified RBC systems, such as by creating roughness on the conducting
plates (Du & Tong 1998), imposing pulsed heating power on the lower plate (Jin
& Xia 2008), rotating the convection cell about a vertical axis (King et al. 2009;
Zhong et al. 2009b), employing multiphase working fluids (Zhong, Funfschilling &
Ahlers 2009a; Biferale et al. 2012; Lakkaraju et al. 2013) and performing lateral
confinement of the turbulent flows (Huang et al. 2013). In this paper, we present,
both experimentally and numerically, a novel and yet simple method that significantly
enhances heat transfer. In particular, our experiments show that by inserting several
vertical partition walls into the convection cell, the heat transport can be increased
by approximately 30 % (with six partition walls). Numerical simulations further show
a dramatic heat-flux enhancement of up to 2.3 times (with 28 partition walls) that
without any partitions. Below, we elaborate our experimental and numerical studies
and reveal the mechanism of this enhancement of heat transfer.

The remainder of this paper is organized as follows. We give a brief description
of the experimental set-up and the numerical method in § 2. Section 3 presents and
analyses the heat-transport enhancement in partitioned RBC cells and reveals its
mechanism. We summarize our findings and conclude in § 4.

784 R5-2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

05
 A

pr
 2

01
8 

at
 1

9:
35

:5
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

5.
61

0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.610


Enhanced heat transport in partitioned thermal convection

Gap d

Gap d

Partition
wall

Heating
plate

Cooling
plate

(a) (b)

FIGURE 1. Schematic representation of the convection cell with four partition walls,
dividing the original cell into five subcells (not in actual proportion). There are gaps of
height d left open between the partition walls and the upper/lower conducting plates of
the cell, allowing the subcells to communicate with each other.

2. Methods

2.1. Experimental set-up
Our experiments were carried out in a rectangular cell (Zhou et al. 2012, 2013),
which measured 50 × 15 × 10 (cm3) in length (L), width (W) and height (H).
The upper and lower thermally conducting plates were made of pure copper and
their fluid-contact surfaces were electroplated with a thin layer of nickel to prevent
oxidation by water. The sidewall was composed of four transparent Plexiglas plates
of 1.2 cm thickness. As schematically shown in figure 1, several Plexiglas partition
walls of 1.2 cm thickness were vertically inserted into the convection cell, equally
spaced along the long side of the cell and parallel to its short side, thus dividing
the RBC system into several equal-sized subcells. In order to allow the subcells to
communicate with each other, we left gaps of 2 mm in height open between the
partition walls and the horizontal plates. Without these gaps, the subcells would
have been independent RBC systems that had different aspect ratios from the system
without partitions, which have been studied extensively (Ahlers et al. 2009; Chillà &
Schumacher 2012).

The temperature of the upper plate was regulated by passing cold water through its
internal channels; the lower plate was heated at a constant power with two embedded
film heaters. Thus, the experiments were conducted under constant-flux boundary
conditions at the bottom plate while maintaining a constant temperature at the top
plate. The temperature difference 1T between the two plates was monitored by 12
thermistors; each plate had six, which were embedded uniformly across the plate. The
working fluid was degassed water with a mean temperature of 31 ◦C, corresponding
to a Prandtl number of Pr= 5.3, and the Nu measurements were made over a range
of 3.5× 107 .Ra. 8.3× 108. At each Ra, the system reached a well-developed state
after 4–8 h, and our measurements were taken after an additional 12 h stabilization.
A typical measurement of Nu lasted approximately 12 h. To reduce the influence of
surrounding temperature fluctuations and minimize heat leakage, the entire RBC cell
was wrapped in several layers of Styrofoam sheets and was placed in a thermostat
throughout the measurements.

784 R5-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

05
 A

pr
 2

01
8 

at
 1

9:
35

:5
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

5.
61

0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.610


Y. Bao, J. Chen, B.-F. Liu, Z.-S. She, J. Zhang and Q. Zhou

2.2. Numerical methods
The direct numerical simulations (DNS) were performed in several two-dimensional
(2D) cells with increasing number of partitions (n = 0, 1, 2 and up to 35) at fixed
Pr (= 5.3) and Ra (= 1× 108). Two considerations prompted us to focus on the 2D
geometry. (i) The numerical effort required for 2D simulations is much smaller, so
that a full resolution of the boundary layers (most active and crucial regions in RBC
system) at high Rayleigh/Reynolds numbers is guaranteed and systematic studies can
be performed. (ii) Detailed temperature and velocity fields are much easier to obtain
in 2D. Such temperature and velocity information is readily available, so that complex
physical mechanisms can be easily identified.

The numerical code is based on a finite-difference scheme of the incompressible
Oberbeck–Boussinesq equations on a 2D domain of width L= 50 cm and height H=
10 cm. The equations are given by

∂u
∂t
+ (u · ∇)u=−∇p+ ν∇2u+ αgTz, (2.1)

∇ · u= 0, (2.2)
∂T
∂t
+ (u · ∇)T = κ∇2T, (2.3)

for the velocity field u(x, t), the kinematic pressure field p(x, t) and the temperature
field T(x, t). Coordinates x and z are established along L and H respectively. Vertical
partition walls of thickness 1.2 cm are inserted at equal horizontal spacing into the
convection cell. Gaps of height d between the partition walls and the upper/lower
conducting plates allow the fluid in each subcell to communicate with the fluid in
other subcells. The velocity field obeys no-penetration and no-slip boundary conditions
at all solid boundaries. The temperature field is isothermal at the top and bottom plates
and adiabatic (no heat flux) at all other solid surfaces. To solve equations (2.1)–(2.3),
we employed the idea of a projection algorithm (Chorin 1968). The space derivatives
are approximated by the second-order central finite-difference scheme on a staggered
grid (Harlow & Welch 1965). Due to the complicated computational situation induced
by the solid boundaries of the partition walls, we employed the method of Gauss–
Seidel iteration (see, e.g., Golub & van Loan 1996) to solve the Poisson equation for
the pressure.

We briefly comment on the temporal and spatial resolutions. The time step was
chosen to fulfil the Courant–Friedrichs–Lewy (CFL) condition, i.e. the CFL number
was 0.2 or less for all of the simulations. The grid resolution was chosen to fully
resolve the boundary layers (Shishkina et al. 2010) and the smallest scales in the bulk,
i.e. the Kolmogorov scale ηK and the Batchelor scale ηB. In the present study, the
number of grid points was set to 2000 × 450 for all runs. The horizontal grid size
was equidistant but the vertical grid size was non-equidistant. Specifically, for all runs
the gaps were resolved with 20 grid points in the vertical direction. For comparison
and convergence purposes, simulations with the same parameters but 10 grid points
within the gaps were also performed, which showed the agreement of the calculated
Nu within 1 %. Thus, our choice of 20 grid points was proven to yield robust results.

In the present work, Nu was calculated over the whole volume and over time. The
time convergence for the calculated Nu was checked by comparing the time averages
over the first and the last halves of the simulations, and the resulting convergence
was smaller than 1 % for all runs. We validated the numerical code by comparing
our calculated Nu with previous results. To do this, we performed the simulation in
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FIGURE 2. (a) Semi-log plot of Nu/Ra0.289 as a function of Ra. Here, Nu is experimentally
measured in rectangular cells with different numbers of partition walls, n = 0, 1, 2, 3,
4 and 6. The error bars shown in the figure reflect the fluctuating nature of thermal
convection and finite measurement uncertainty. (b) Plot of Nu(n)/Nu(0) as a function of
the number of partition walls, n, at a gap height of d = 2 mm and Ra = 1 × 108 from
direct numerical simulations (DNS) (open circles) and experiments (solid triangles).

a 2D box of unit aspect ratio at Ra = 1 × 108 and Pr = 4.3. The resulting Nusselt
number we computed (Nu = 25.85) was in agreement with the one obtained for the
same parameters by Sugiyama et al. (2009) and Zhou et al. (2011) (Nu= 25.62) to
a precision of less than 1 %.

3. Results and discussion

Figure 2(a) shows a semi-log plot of the compensated Nusselt number, Nu/Ra0.289,
as a function of Ra. The measured values of Nu at n = 0 (no partitions) are the
same as those measured in previous studies in the same parameter range (Zhou et al.
2012, 2013) and are described well by a power law Nu–Ra0.289. As the number of
partition walls increases from 0 to 6, however, Nu shows a clear monotonic increase.
In particular, Nu is found to increase, on average, by ∼4.3 %, 11.5 %, 19.0 %,
25.3 % and 32.7 % respectively for n = 1, 2, 3, 4 and 6. This is quite surprising
and counterintuitive: now the more restricted convective flow by the partition walls
does not impede the heat flux but rather enhances it. It should be noted that the
thermal effects of the Plexiglas walls are negligible (Ahlers et al. 2009) and hence
cannot account for the observed Nu enhancement. Furthermore, the power law fits
to the measured Nu–Ra data yield scaling exponents in the range between 0.27 and
0.3. This exponent is consistent with those previously obtained in both rectangular
(Zhou et al. 2012) and cylindrical cells (Funfschilling et al. 2005), suggesting that
the present flow is still in the so-called ‘classical’ regime of turbulent RBC where the
overall heat transfer of the system is dominated mainly by thermal boundary layers
(Ahlers et al. 2009).

To gain insight into how the heat-transfer efficiency is improved by partition walls,
we performed numerical studies in 2D cells at fixed Pr (= 5.3) and Ra (= 108) with
different numbers of partitions. Figure 2(b) plots the obtained Nu as a function of the
number of partition walls, n. Here, Nu(n) is normalized by Nu(n = 0) to show the
enhancement effects. Both the 2D numerical and three-dimensional (3D) experimental
results are plotted in the figure to show the heat-exchange enhancement. It is clear
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FIGURE 3. (a) Time-averaged non-dimensionalized temperature (colour) and velocity
(arrows) fields obtained in a 2D numerical RBC cell with 20 partition walls at
d = 2 mm and Ra = 1 × 108. Here, the red and blue colours correspond to the
high- and low-temperature regions respectively. (b) The corresponding time-averaged
non-dimensionalized pressure field. (c) An enlarged portion of the pressure field, indicated
by the dark-green box in (b), near the heated lower plate. The red and blue colours
in (b) and (c) correspond to the high- and low-pressure regions respectively. (d) The
corresponding mean horizontal velocity profile 〈u(x)〉t calculated at the mid-height of the
thin gaps near the lower plate (z= d/2, indicted by the horizontal dash–dot line in (c)).
The vertical dashed lines mark the positions of partition walls. Corresponding movies can
be found in the supplementary material available at http://dx.doi.org/10.1017/jfm.2015.610.

that the 2D simulations yield similar results to the experiments for small numbers
of partitions (up to six), and the trend of enhancement extends monotonically up to
n = 28, where the heat flux is enhanced by 130 %. This amount of enhancement is
unprecedented, indicating a promising technological potential once implemented in
practice.

To reveal how this remarkable increase of heat flux is achieved, we looked
closely into the flow structures inside the cells and their temperature and pressure
distributions. Figure 3(a) shows the flow pattern in a system with 20 partition
walls, and overlapped with the temperature field, where the local temperature is
indicated according to the colour bar. Apparently, the system has undertaken a
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symmetry-breaking bifurcation: the fluid in each subcell moves unidirectionally and
takes on directions alternatively across partition walls. In particular, fluid in subcells
with higher temperature moves upwards and cooler fluid moves downwards; velocity
and temperature are precisely correlated. The fluid circulates between adjacent subcells
through the gaps, ensuring fluid continuity. The symmetry-breaking bifurcation also
leads to a pressure distribution that sustains the above coherent flow, as evidenced
by figure 3(b). Here, one sees clearly that near both the top and bottom conducting
plates the high- and low-pressure regions alternately appear at the two horizontal
ends of the thin gaps. This is shown more clearly in a close-up plot in figure 3(c).
Here, the pressure field is established by the buoyancy-driven flow, and subsequently
drives the horizontal flows within the gaps. Figure 3(d) shows the time-averaged
horizontal velocity profile 〈u(x)〉t computed at the mid-height of the thin gaps near
the lower plate (z/H = d/2). The vertical dashed lines in the figure indicate the
positions of partition walls. One sees that due to the horizontal pressure drop across
each gap there is a strong horizontal jet within all thin gaps. This jet in the gaps
sweeps the thermal boundary layers, brings the hot or cold fluid into the bulk of the
subcells, and thus realizes the efficient heat exchange in the system. It should be
noticed that our preliminary simulations in 3D geometry reveal similar results: when
28 partition walls are inserted into the system, the global heat flux can be enhanced
by approximately 113 % and the observed flow structures – including the velocity,
temperature and pressure fields – are similar to those of 2D simulations, as shown in
figure 3.

The enhancement of the overall heat flux through the system is realized by two
effects. First, the flows in each subcell become more coherent when the number of
partition walls n is large, i.e. the mean velocity and temperature fields are strongly
correlated with each other in each subcell, and hence carry a more effective heat
flux. On the other hand, there is always a competing effect: as n increases, the
heat-carrying fluid is reduced and the impedance from the partition walls increases,
both of which reduce the overall heat transport. From these reasonings, one may
expect that there should be an optimum number of partition walls; this is indeed
observed in figure 2(b). The second factor is the existence of jet flows in the thin
gaps that sweep the local boundary layers. In fact, some previous studies have taken
the approach of inserting horizontal partitions into the system to obstruct and alter the
convective flow pattern, but have found that the heat-transfer efficiency changes little
(Ciliberto, Cioni & Laroche 1996; Xia & Lui 1997). This is because in the so-called
classical regime heat transport is limited by the thickness of the thermal boundary
layer, and altering the flow dynamics by these horizontal partitions has little effect
on the boundary layers. In contrast, close inspection of our simulation data regarding
the local temperature distribution in the thin gaps shows that the jet can effectively
reduce the thermal boundary layer thickness to at most 1/3 of that of the traditional
RBC system (no partitions) at the same Ra. Thus, the jet induces a large increase of
the temperature gradient at the conducting plates, and hence the heat flux (e.g. Nu).
This suggests that the strong horizontal jets in thin gaps are the main contributors
to the heat-transfer enhancement. This mechanism highlights the importance of the
gap height: at a gap height of the order of the thermal boundary layer, the maximum
heat-transfer enhancement can be realized.

Figure 4 shows the normalized Nu as a function of the gap height d obtained in a
2D cell with six partition walls. Here, d is normalized by the thermal boundary layer
thickness δth [= H/2Nu(0)] obtained in the convection cell with no partitions. The
figure shows that Nu reaches a maximum value as d ∼ δth. The physical mechanism
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FIGURE 4. Plot of Nu(6)/Nu(0) as a function of the normalized gap height d/δth from
numerical simulations. The horizontal dashed line indicates Nu(6)/Nu(0) = 1 and the
vertical dashed line marks the position d= δth. One sees that the heat-transfer enhancement
is optimized when d ∼ δth. Inset: the volume-corrected plot of Nu(6)/[Nu(0)f (d)] as a
function of d/δth, where f (d) is the actual fluid volume normalized by the volume of the
cell (when there are no partitions).

is similar to that found by Liu & Zhang (2008) in thermal convection, where the
fluid interacts with many mobile spherical insulators. The thermal insulation is most
effective when the radius of the insulators matches the thickness of the thermal
boundary layer. From the flow visualizations, we find that the horizontal jet flow
within the gaps reaches its highest intensity when the gap height d is comparable
with δth. For too narrow gaps, an increased resistance within the gap restrains the
flow within the gaps and thus reduces the overall heat transport, while for too large
d there is no significant pressure-drop buildup so that the jet flow nearly vanishes.
Furthermore, it is seen that Nu(6) recovers to Nu(0) for large d (d=H/3≈ 18δth), as
the partition walls play little role in modifying the flows. On the other hand, for d= 0,
the overall heat transport is reduced because of the vanished jets in the gaps and the
limited heat-carrying fluid volume. If the decrease of the fluid volume is accounted
for, as shown in the inset of figure 4 (the leftmost point), the Nusselt number is
found to be the same as that of any non-communicating convection subcells.

4. Conclusion

In conclusion, a partitioned RBC system with thin gaps connecting neighbouring
cells is able to produce a qualitatively different flow pattern that greatly enhances
the heat flux. The most interesting phenomenon revealed by the present study is
the observed symmetry-breaking bifurcation, which is similar to the self-organized
formation of the convection roll in traditional RBC (Xi, Lam & Xia 2004). There,
cold and hot plumes are entrained by the convection roll to two sides of the cell,
forming a horizontal pressure gradient, which, in the present work, drives the jet flow
in the thin gaps. Thus, the sustained circulations around the partition walls may be
considered as a series of convection rolls with alternating and unidirectional flows in
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each subcell. Moreover, our preliminary simulations suggest that the heat-transport
enhancement can be further optimized by either varying the thickness of the partition
walls or changing the aspect ratio of the convection cell; these effects will be
investigated in a future study.
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